A Pseudolite-Based Positioning System for Legacy GNSS Receivers
نویسندگان
چکیده
The ephemeris data format of legacy GPS receivers is improper for positioning stationary pseudolites on the ground. Therefore, to utilize pseudolites for navigation, GPS receivers must be modified so that they can handle the modified data formats of the pseudolites. Because of this problem, the practical use of pseudolites has so far been limited. This paper proposes a pseudolite-based positioning system that can be used with unmodified legacy GPS receivers. In the proposed system, pseudolites transmit simulated GPS signals. The signals use standard GPS ephemeris data format and contain ephemeris data of simulated GPS satellites, not those of pseudolites. The use of the standard format enables the GPS receiver to process pseudolite signals without any modification. However, the position output of the GPS receiver is not the correct position in this system, because there are additional signal delays from each pseudolite to the receiver. A post-calculation process was added to obtain the correct receiver position using GPS receiver output. This re-estimation is possible because it is based on known information about the simulated signals, pseudolites, and positioning process of the GPS receiver. Simulations using generated data and live GPS data are conducted for various geometries to verify the proposed system. The test results show that the proposed system provides the desired user position using pseudolite signals without requiring any modifications to the legacy GPS receiver. In this initial study, a pseudolite-only indoor system was assumed. However, it can be expanded to a GPS-pseudolite system outdoors.
منابع مشابه
Stand-Alone and Hybrid Positioning Using Asynchronous Pseudolites
global navigation satellite system (GNSS) receivers are usually unable to achieve satisfactory performance in difficult environments, such as open-pit mines, urban canyons and indoors. Pseudolites have the potential to extend GNSS usage and significantly improve receiver performance in such environments by providing additional navigation signals. This also applies to asynchronous pseudolite sys...
متن کاملInter-Pseudolite Range Augmented GNSS PPP Navigation for Airborne Pseudolite System
Ground-based pseudolite navigation systems have several limitations, such as low vertical accuracy, susceptibility to multipath effects, and near-far signal problems. These limitations could be addressed with an airborne pseudolite system. However, to ensure high user positioning accuracy the aerial signal transmitters have to be accurately positioned. Commonly used methods are based on the “in...
متن کاملIntegration of GNSS and Pseudo-Satellites: New Concepts for Precise Positioning
Current Global Navigation Satellite Systems (GNSS), such as the GPS and Glonass systems, have been widely used in surveying and geodesy. It is well known that for such spaceborne satellite positioning systems the accuracy, availability and reliability of the positioning results is very dependent on both the number and geometric distribution of satellites being tracked. However, under some harsh...
متن کاملDeveloping Regional Precise Positioning Services Using the Legacy and Future GNSS Receivers
This paper presents an overview of technical solutions for regional area precise GNSS positioning services such as in Queensland. The research focuses on the technical and business issues that currently constrain GPS-based local area Real Time Kinematic (RTK) precise positioning services so as to operate in future across larger regional areas, and therefore support services in agriculture, mini...
متن کاملStudy of Constellation Design of Pseudolites Based on Improved Adaptive Genetic Algorithm
—Global Navigation Satellite System (GNSS) is vulnerable to interferences and has other shortcomings such as unreliable signals in locations that are indoors, in urban canyons, and deep mines. Therefore, the pseudolite (pseudo-satellite) positioning technology, which has gained wide attention in recent years, is used to complement and enhance GNSS. The constellation layout of pseudolites creat...
متن کامل